maandag 9 december 2019

Inverse functies

\(
\eqalign{
  & y = \frac{{ax + b}}
{{cx + d}}  \cr
  & y(cx + d) = ax + b  \cr
  & cxy + dy = ax + b  \cr
  & cxy - ax =  - dy + b  \cr
  & x(cy - a) =  - dy + b  \cr
  & x = \frac{{ - dy + b}}
{{cy - a}} \cr}
\)


donderdag 5 december 2019

Goniometrie

\( \eqalign{ & a + b + c = \pi \cr & a + b = \pi - c \cr & \tan \left( {a + b} \right) = \tan \left( {\pi - c} \right) \cr & \frac{{\tan (a) + \tan (b)}} {{1 - \tan (a)\tan (b)}} = - \tan (c) \cr & \tan (a) + \tan (b) = - \tan (c)\left( {1 - \tan (a)\tan (b)} \right) \cr & \tan (a) + \tan (b) = - \tan (c) + \tan (a)\tan (b)\tan (c) \cr & \tan (a) + \tan (b) + \tan (c) = \tan (a)\tan (b)\tan (c) \cr} \)