donderdag 19 april 2018

Wereldkaart

zondag 15 april 2018

Dat is dan nog best een aardige opgave

Naar aanleiding van twee goniometrische vergelijkingen. Die '2' gooit roet in het eten... inderdaad. Zonder die '2' was het best een aardig sommetje:

 \( \eqalign{ & \cos ^2 (x) - \sin ^2 (x) = 0 \cr & 1 - \sin ^2 (x) - \sin ^2 (x) = 0 \cr & 1 - 2\sin ^2 (x) = 0 \cr & 2\sin ^2 (x) = 1 \cr & \sin ^2 (x) = \frac{1} {2} \cr & \sin (x) = - \sqrt {\frac{1} {2}} \vee \sin (x) = \sqrt {\frac{1} {2}} \cr & \sin (x) = - \frac{1} {2}\sqrt 2 \vee \sin (x) = \frac{1} {2}\sqrt 2 \cr & x = \frac{3} {4}\pi + k \cdot 2\pi \vee x = 1\frac{1} {4}\pi + k \cdot 2\pi \vee x = \frac{1} {4}\pi + k \cdot 2\pi \vee x = 1\frac{3} {4}\pi + k \cdot 2\pi \cr & x = \frac{1} {4}\pi + k \cdot \frac{1} {2}\pi \cr} \)

Nou ja... 't idee was prima...:-)

zaterdag 14 april 2018

Maar wat is dit?

Groeten uit Spanje...:-)

Bezoekers

vrijdag 30 maart 2018

Doe 's lollig:-)

\(
\begin{array}{l}
 \left\{ \begin{array}{l}
 x + y = 24 \\
 x = 1\frac{1}{2}y \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 1\frac{1}{2}y + y = 24 \\
 x = 1\frac{1}{2}y \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 2\frac{1}{2}y = 24 \\
 x = 1\frac{1}{2}y \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = \frac{{24}}{{2\frac{1}{2}}} \\
 x = 1\frac{1}{2}y \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = \frac{{48}}{5} \\
 x = 1\frac{1}{2}y \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = 9\frac{3}{5} \\
 x = 1\frac{1}{2} \cdot 9\frac{3}{5} \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = 9\frac{3}{5} \\
 x = 9\frac{3}{5} + 4\frac{1}{2} + \frac{3}{{10}} \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = 9\frac{3}{5} \\
 x = 9\frac{6}{{10}} + 4\frac{5}{{10}} + \frac{3}{{10}} \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = 9\frac{3}{5} \\
 x = 13\frac{{14}}{{10}} \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = 9\frac{3}{5} \\
 x = 14\frac{4}{{10}} \\
 \end{array} \right. \\
 \left\{ \begin{array}{l}
 y = 9\frac{3}{5} \\
 x = 14\frac{2}{5} \\
 \end{array} \right. \\
 \end{array}
\)

woensdag 14 maart 2018

De geschiedenis van π

donderdag 25 januari 2018

Bewijs zwaartepunt

Wie heeft er een formule voor het berekenen van het zwaartepunt van een driehoek als de 3 hoekpunten bekend zijn?

Antwoord

Tel de coördinaten van de hoekpunten bij elkaar op, en deel ze door 3. Je krijgt dan de coördinaten van het zwaartepunt.

Het zwaartepunt verdeelt elke zwaartelijn in stukken die zich verhouden als 2:1. Je kunt dan (met vectoren) de formule als volgt aantonen:



\( \eqalign{ & \overrightarrow m = \frac{{\overrightarrow a + \overrightarrow b }} {2} \cr & \overrightarrow z = \overrightarrow m + \overrightarrow {MZ} = \overrightarrow m + \frac{1} {3}\overrightarrow {MC} \cr & \overrightarrow {MC} = \overrightarrow c - \overrightarrow m = \overrightarrow c - \frac{{\overrightarrow a + \overrightarrow b }} {2} \cr & \overrightarrow z = \frac{{\overrightarrow a + \overrightarrow b }} {2} + \frac{1} {3}\left( {\overrightarrow c - \frac{{\overrightarrow a + \overrightarrow b }} {2}} \right) = \frac{1} {3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right) \cr} \)